MCD2006G/T/R

PLL ICs with Integrated VCO for FM/FSK Transceiver

General Description

MCD2006G/T/R is a set of ICs for FM/FSK wireless transceiver intended for use in the VHF band, MCD2006G and MCD2006T are applied in transmitter, and MCD2006R is used in receiver. Three ICs contain an integrated VCO, a RF power amplifier, a reference crystal oscillator, and a frequency synthesizer. A completed phase-lock-loop (PLL) is consisted by combining the ICs and on board LPF, inductor and varactors.

The difference MCD2006G between and MCD2006T/R is T/R contains a 6-bit ROM, the PLL can be locked at corresponding frequencies when users setup 6-bit ROM logic input shown in fixed logic table in appendix. The frequencies MCD2006T between and MCD2006R corresponding each other with a 455KHz frequency difference. MCD2006G contains **MCU** programmable control interface which is used for setting division for any targeted frequency between 3MHz~110MHz by an external MCU.

In practical terms MCD2006G must combine with a MCU but MCD2006T/R can be free of MCU.

Supply voltage range is 2.7 to 4.5 volts. It has been proved that MCD2006G/T/R can work stably between -40 to +85 degrees.

Typical Applications

- FM transceiver, remote controller
- 27-49M baby monitor, PTT and car radio
- Infrared FM transceiver system

Features

■ Operating Frequency:

MCD2006G: 3MHz~110MHz

MCD2006T/R: fixed frequencies shown in the

logic table in appendix

20MHz crystal is a must for 3.2~8.0MHz

4MHz crystal is a must for 40.660~54.405MHz

■ Operating Voltage Range: 2.7~4.5V (3.3V Typical)

Operating Power Consumption: MCD2006G/T: 19mA@3.3V, 27MHz

MCD2006R: 12mA@3.3V, 27MHz

■ The crystal oscillator supports:

MCD2006G: 4~25MHz

MCD2006T/R:

4MHz (for 5KHz reference frequency) 20MHz (for 25KHz reference frequency)

■ RF output power(50Ω output impedance) MCD2006G/T: 3dBm@27MHz

 $MCD2006R:\ -15dBm@27MHz$

■ Low phase noise: -112dBc/Hz at 10KHz offset, 50Hz loop bandwidth

■ TX Modulation: FM/FSK

■ RF AMP Output Distortion: <1%

■ Modulated Deviation: 5KHz reachable

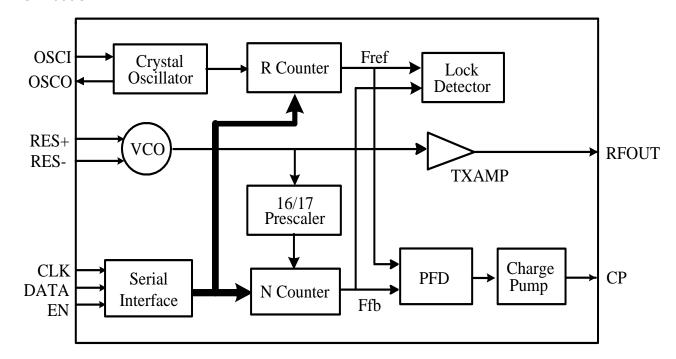
Modulated Audio Frequency Range: 50Hz~30KHz

■ Data Rate: 300bps~120kbps

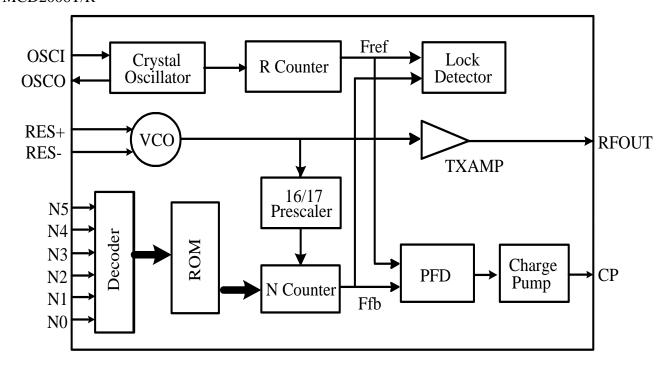
■ Package:

MCD2006G: TSSOP-16 MCD2006T/R: QFN-20L

Version History


Version	Issued time	Notes
V1.0	Oct. 28, 2006	First English version created
V1.1	Aug. 29, 2008	Add MCD2006S
V1.2	May 01, 2010	Change MCD2006S package to QFN20L
V1.3	Nov. 20, 2012	Update MCD2006S to MCD2006T, add MCD2006R.

1

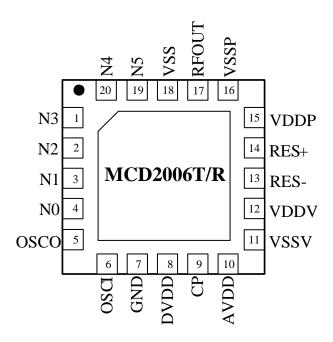

www.mcdevices.com

Function Block Diagram

■ MCD2006G



■ MCD2006T/R


Pin Assignment and Description

■ MCD2006G

Pin#	Pin Name	I/O	Description
1	VSS	I	Terminal of PLL ground.
2	CLK	I	MCU control clock input. Data are clocked in on the rising edges of the clock.
3	DATA	I	MCU serial data input. LSB are sent in first and last two bits are group code.
4	EN	I	MCU control enable input. When EN is high level, the data saved in shift register is loaded into appropriate counter (determined by group code).
5	OSCO	О	Output terminal of crystal oscillator. This pin is connected to the crystal when the reference frequency is generated by the crystal oscillator.
6	OSCI	I	Input terminal of crystal oscillator. The pin is connected to the crystal when the reference frequency is generated by the local oscillator. It also can be driven by an external clock.
7	DVDD	I	Digital circuit power supply (2.7-4.5V).
8	СР	О	Output terminal of charge pump. Connecting to the loop filter to drive the voltage control input of the VCO.
9	AVDD	I	Analogue circuit power supply (2.7-4.5V).
10	VSSV	I	Terminal of VCO ground.
11	VDDV	I	VCO circuit power supply (2.7-4.5V).
12	RES-	I	The RES pins are used to supply DC voltage to the VCO, as well as to tune the centre frequency of the VCO. Equal value capacitors should be connected to this pin and pin 13.
13	RES+	I	Same as pin12.
14	VDDP	I	RF power amplifier circuit power supply (2.7-4.5V).
15	VSSP	I	Terminal of RF power amplifier ground.
16	RFOUT	О	RF output pin. Typical output power is $3dBm@27MHz$ with 50Ω output impedance.

■ MCD2006T/R

Pin#	Pin Name	I/O	Description		
19~20	N5~N0	I	6 th ~1 st ROM control bit. When the pin floats, the logic level is low, when		
1~4	113~110	1	the pin is connected to VDD, the logic level is high.		
5	OSCO	0	Output terminal of crystal oscillator. This pin is connected to the crystal		
3	OSCO	0	when the reference frequency is generated by the crystal oscillator.		
			Input terminal of crystal oscillator. The pin is connected to the crystal		
6	OSCI	I	when the reference frequency is generated by the local oscillator. It also		
			can be driven by an external clock.		
7	GND	I	Terminal of ground.		
8	DVDD	I	Digital circuit power supply (2.7-4.5V).		
0	9 CP O		Output terminal of charge pump. Connecting to the loop filter to		Output terminal of charge pump. Connecting to the loop filter to drive the
9			voltage control input of the VCO.		
10	AVDD	I	Analogue circuit power supply (2.7-4.5V).		
11	VSSV	I	Terminal of VCO ground.		
12	VDDV	I	VCO circuit power supply (2.7-4.5V).		
			The RES pins are used to supply DC voltage to the VCO, as well as to		
13	RES-	I	tune the centre frequency of the VCO. Equal value capacitors should be		
			connected to this pin and pin 16.		
14	RES+	I	Same as pin15.		
15	VDDP	I	RF power amplifier circuit power supply (2.7-4.5V).		
16	VSSP	I	Terminal of RF power amplifier ground.		
17	RFOUT	0	RF output pin. Typical output power is 4dBm@49MHz with 50Ω output		
1 /	Kroui		impedance.		
18	VSS	I	Terminal of analogue circuit ground.		

Recommended Operating Conditions

Domonoton	Cymbal		I Init		
Parameter	Symbol	Min	Typical	Max	Unit
Power Supply Voltage	VDD	2.7	3.3	4.5	V
Operating Temperature	T_{A}	-40	27	+85	$^{\circ}$

Electrical Characteristics (VDD=3.3V, -40 $^{\circ}$ C \leq T_A \leq +85 $^{\circ}$ C; except as specified)

Symbol	Parameter	Cone	ditions	Min	Тур	Max	Units	
Genera	l Characteristics							
		MCD	3	27	110			
F_{OUT}	Operating Frequency	MCD2006T/R	20MHz crystal	3.2		8.0	MHz	
1.OUT	Operating Frequency	(see the appendix)	4MHz crystal	40.660		54.405	WITIZ	
		MCD	2006G	4		25		
F _{OSC}	Crystal Frequency	MCD200CT/D	5KHz reference frequency	/	4	/	MHz	
		MCD2006T/R	25KHz reference frequency	/	20	/		
	DI D	MCD	2006G	se	t by us	ers		
F_{PD}	Phase Detector	MCD2006F/D	4MHz crystal	/	5	/	KHz	
	Frequency	MCD2006T/R	20MHz crystal	/	25	/		
V_{IH}	High-Level Input Voltage			0.8		1	VDD	
V_{IL}	Low-Level Input Voltage			0.1		0.3	V	
	Power Consumption		F _{OUT} =27MHz		19			
т		MCD2006G/T	F _{OUT} =49MHz		17		mA	
I_{DD}			$F_{OUT} = 100MHz$		18		ша	
		MCD2006R	$F_{OUT} = 27MHz$		12			
I_{CP}	Charge Pump Current				±800		uA	
RF Cha	aracteristics							
V_{CP}	VCO Control Voltage			0.5		VDD-1.0	V	
1		F _{OUT} =	=27MHz		3			
P_{OUT}	Output Power	F _{OUT} =	=49MHz		4		dBm	
		$F_{OUT} =$		5				
		E 27MH-	2nd Harmonic 50Ω Load		-54			
	Harmonic Suppression (The matching network	F _{OUT} =27MHz	3rd Harmonic 50Ω Load		-53			
HS _{OUT}	is shown in	E 40MI	2nd Harmonic 50Ω Load		-57		dBm	
		F _{OUT} =49MHz	3rd Harmonic 50Ω Load		-59			

Symbol												
-	Parameter	Condi	tions	Min	Тур	Max	Units					
			2nd Harmonic		-53							
		F _{OUT}	50Ω Load		-33							
		=100MHz	3rd Harmonic		<i>5</i> 1		1D					
			50Ω Load		-54		dBm					
IZ.	Fine Tuning Sensitivity	F _{OUT} =2	7MHz		3		MHz/V					
K _{VCO}	(varactor ISV149)	F _{OUT} =4	9MHz		900		KHz/V					
Z _{OUT}	Output Impedance				50		Ω					
			1KHz offset		-88							
		$F_{OUT} = 27MHz$	10KHz offset		-112							
	Phase Noise		100KHz offset		-124							
			1KHz offset		-77		dBc/Hz					
PN _{OUT}		F _{OUT} =49MHz	10KHz offset		-106							
			100KHz offset		-116							
			1KHz offset		-77							
		$F_{OUT} = 100MHz$	10KHz offset		-104							
			100KHz offset		-124							
Modulat	tion (TX)			•			•					
S_{AF}	Audio Frequency Range			50		30K	Hz					
S_{DR}	Data Rate			300		120K	bps					
Б	FM Deviation	$F_{OUT} = 2$	27MHz	0.035		0.045	1711					
D_{EV}	(1SV149, 300~3K BPF)	$F_{OUT} = 4$	l9MHz	0.03		0.04	KHz					
Б	M 11 (1D ' ' '	26mV amplitude,	$F_{OUT} = 27MHz$		±3		1711					
F_{MD}	Modulated Deviation	23mV amplitude,	F _{OUT} =49MHz		±3		KHz					
	S/N	$F_{OUT} = 27MHz$			44							
SNR	(3KHz modulation-port character,300~3KBPF)	F _{OUT} =4		44		dB						
DIST	Audio Distortion	demodul	ated AF			1.0	%					

1. Function Description

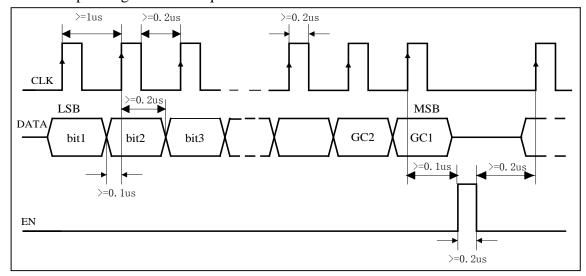
1.1 ROM mode

MCD2006T/R works at ROM mode only. The 6-bit input data N0-N5 is decoded to 64 control lines by X-Y crossed combination. The 64 lines correspond to 64 18-bit parallel outputs which are sent to prescaler and counters.

64 channels are partitioned to 4 groups, which are shown in appendix in detailed. Users set the logic level of N0~N5 according to the logic table, PLL will lock at the corresponding frequency.

The frequencies in Group A and B in MCD2006T are set for IR FM transmitter whose reference frequency is chosen as 25KHz. While frequencies in Group C and D are set for baby monitor system whose reference frequency is chosen as 5KHz.

The frequencies in Group A,B,C and D in MCD2006R are all set for baby monitor system with a fixed 5KHz reference frequency. The frequencies in Group A are corresponding to the frequencies in MCD2006T Group C with a 4.455MHz frequency difference. Same situation between Group B and MCD2006T Group D. The frequencies in Group C and D are corresponding to the frequencies in MCD2006T Group C and D with a 455KHz frequency difference.


1.2 MCU mode

MCD2006G works at MCU mode only. The CLK, DATA, and EN pins are used for serial data interface Rinary serial data enter via the DATA pin,

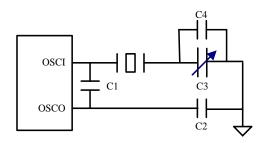
interface. Binary serial data enter via the DATA pin, go through serial-to-parallel interface to configure reference counter and channel N counter separately according to the group code.

Data shift in shift register at the rising edge of the CLK signal. Firstly LSB data are shifted in, and then the last two bits (group code) decode the internal register address. At the rising edge of EN signal, shifted data are loaded into one of the two appropriate counters.

The input CLK, DATA and EN timing should follow drawing diagram.

Notes:

- (1) LSB data are shifted in first.
- (2) When power up, usually R counter is configured before N counter.


Group code assignment:

GROUI	CODE	LOCATION				
GC1 (MSB)	GC2 (LSB)	LOCATION				
0	0	Control Latch(test purpose only)				
1	0	Channel N counter				
1	1	Reference counter				

7

1.3 Reference Oscillator

The reference frequency for PLL is obtained by applying an external crystal and a few capacitors. External capacitors C1 to C4 are required to set the proper crystal's load capacitance and oscillation frequency. MCD2006S has to apply 4MHz crystal for getting a 5KHz reference frequency or 20MHz crystal for getting a 25KHz reference frequency.

1.4 Reference Divider (R counter)

The reference divider provides reference frequency for PFD (Phase Frequency Detector). It includes a fixed 1/2 divider and a 10-bit programmable divider. The 10-bit divider can program the division ratio between 3 and 1023. Due to the fixed 1/2 divider, the total division ratio for reference divider will range from 6 to 2046.

The division ratio of MCD2006T/R is fixed at 800 internally, so a 4MHz crystal is a must to create 5KHz reference frequency, and a 20MHz crystal is a must to create 25KHz reference frequency.

The division ratio of MCD2006G is set by an external MCU. See the programming description at Section 2 for details.

1.5 Feedback Divider (N counter)

The channel N counter is clocked by the RF signal generated by VCO. The N counter consists of a 4-bit swallow counter with a division ratio 0<A<15 and a 12-bit pulse counter with a division ratio 3<B<4095. In conjunction with the 16/17 prescaler, the total division ratio can range from 48 to 65535 on the feedback channel. For the proper operation of the prescaler, the pulse counter division ratio B should be always equal to or greater than the swallow counter division ratio A.

The division ratio of MCD2006T/R is set by ROM.

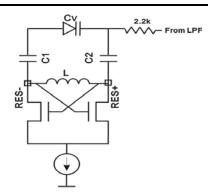
Users simply set the input level of N0-N5 following the logic table, the internal decoder and ROM will read appropriate division ratio and send it to the N counter. There is no calculation and configuration requirement for the users. When choosing frequency in the range of 3.2~8.0MHz, a 20MHz crystal is a must. While a 4MHz crystal is a must when selecting frequency in the range of 40.660~54.405MHz.

The division ratio of MCD2006G is determined by an external MCU. See the programming description at Section 2 for details.

1.6 Prescaler

The prescaler of MCD2006G/T/R consists of a pre-amplifier, and a CMOS 16/17 dual modulus divider. The prescaler offers clock to the subsequent CMOS N counter.

1.7 Phase/Frequency Detector (PFD)


PFD compares frequency and phase of two inputs from reference counter and N counter, outputs control logic to charge pump. The PFD receives a feedback signal from charge pump in order to eliminate dead zone.

1.8 Charge Pump

The charge pump pumps **u**p current to an external loop filter, or pumps down from the filter according to the polarity control of its PFD outputs. The loop filter converts the charge into VCO's control voltage. The charge pump steers the charge pump output CP to VDD (pump-up) or GND (pump-down). Under the locked condition, CP is primarily in a TRI-STATE mode with small corrections. The charge pump current magnitude is ±800uA.

1.9 VCO

VCO is a tuned differential amplifier with the gate and drain cross coupled to provide positive feedback and a 360° phase shift (shown in the following picture). It is comprised an external inductor, two capacitors, two varactors and internal circuits. The users need to select appropriate inductors for the desired frequency of operation. The output of the VCO is applied to the TXAMP and buffered to prescaler circuit, where it is divided down and compared to the reference frequency.

The setup of the VCO can be summarized as follows. Firstly, open the loop, build up an oscillation (as shown in above picture). Two capacitors connected at pin RES- and RES+ are recommended as 100~120pF (when loop locked at 49MHz). The inductor connected between pin RES- and RES+ need to be calculated according to following equation.

$$L = \left(\frac{1}{2\pi f}\right)^2 \frac{1}{C}$$

$$C = C1 \text{ or } C2 //Cv$$

Cv: varactor capacitance corresponding to applied LPF voltage, check varactor datasheet.

In above equation, the value of C is the amount of capacitance presented by varactors, capacitors and parasitic. For rough calculation, the parasitic value

can be ignored.

Define the VCO frequency as the lowest frequency F1 when setting the negative end of Cv to 0V, define the VCO frequency as the highest frequency F2 when setting the negative end of Cv to VDD. F1 and F2 determine VCO frequency range. Users need to guarantee the targeted frequency is within the range, staying at middle is recommended.

Secondly, add LPF in to become a close loop (shown in application circuit). At this moment, the voltage level of the negative end of Cv is controlled by the added LPF, when this voltage fixes at a stable level, the loop locks. The voltage level of LPF should be within the control voltage range of VCO.

1.10 TXAMP

The RF amplifier is an output stage. The amplifier of MCD2006G/T is capable of providing 4dBm output power to a 50ohm load while operating at 3.3V power supply, the MCD2006R is able to provide -15dBm output power.

2. Programming Description

2.1 Reference counter

The reference counter provides reference frequency for PLL. It includes a fixed 1/2 divider and a 10-bit programmable divider. The 10-bit divider can program the division ratio between 3 and 1023. Due to the fixed 1/2 divider, the total division ratio for reference divider can be set from 6 to 2046.

LSB

Configuration word

MSB

Division ratio of the programmable 10bit R counter:

Division ratio (R)	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1
3	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	1	0	0
•	•	•	•	•	•	•	•	•	•	•
1023	1	1	1	1	1	1	1	1	1	1

$$R = R1x2^{0} + R2x2^{1} + ... + R10x2^{9} (R \ge 3)$$

The total division ratio range: 6 to 2046.

2.2 Channel N counter

This programmable counter is composed of a 4-bit swallow counter and a 12-bit pulse counter, in conjunction with the 16/17 prescaler to provide division ratio range from 48 to 65535.

LSB configuration word MSB

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 GC2=0 G
--

|-----swallow counter-----|-----group code-----|

Swallow counter division ratio (A)

Division ratio (A)	N4	N3	N2	N1
0	0	0	0	0
1	0	0	0	1
•	•	•	•	•
15	1	1	1	1

$$A = N1x2^0 + N2x2^1 + ... + N4x2^3$$

Division ratio range: 0 to 15

Pulse counter division ratio (B)

Division ratio (B)	N16	N15	N14	N13	N12	N11	N10	N9	N8	N7	N6	N5
3	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	1	0	0
•	•	•	•	•	•	•	•	•	•	•	•	•
4095	1	1	1	1	1	1	1	1	1	1	1	1

$$B = N5x2^0 + N6x2^1 + ... + N16x2^{11}$$

Division ratio range: 3 to 4095 (B≥A)

Total division ratio of programmable N counter:

N = 16 * B + A (B \ge A)

Division ratio range: 48 to 65535

3. Configuration Examples

Example A: To get a 5KHz reference frequency from a 4MHz crystal

■ Total division ratio $2R = 4MHz \div 5KHz = 800$

■ Programmable division ratio $R = 800 \div 2 = 400$

■ Binary format (10bit) R=0110010000

■ Group code "11"

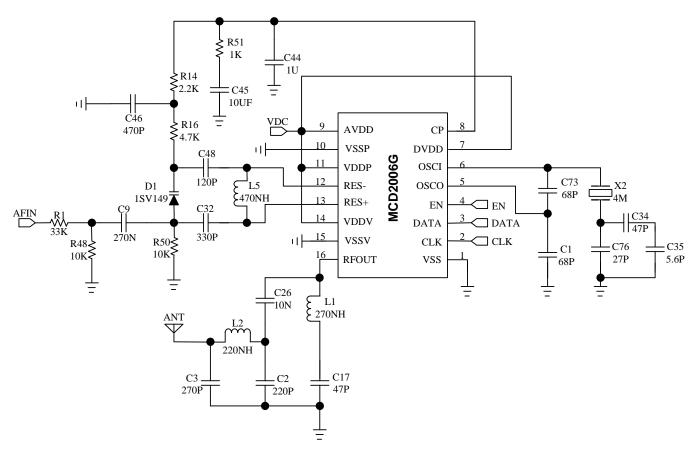
■ Configuration word(12bit) "110110010000"

LSB(first in) \rightarrow MSB

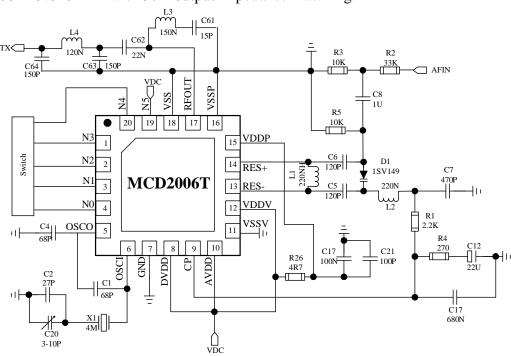
0 0 0 0 1 0 0 1 1 1

Example B: To synthesize a 40.665MHz frequency from a 5KHz reference frequency

- Reference frequency 5KHz (see Example A)
- Total division ratio $16*B + A = 40.665MHz \div 5KHz = 8133$
- Pulse counter division ratio $B = Int (8133 \div 16) = 508$
- Binary format (12-bit) B = 0001111111100
- Swallow counter division ratio A = 8133 16*508 = 5
- Binary format (4bit) A=0101
- Group code "10"
- Configuration word(18bit) "1000011111111000101"


 $LSB(first in) \rightarrow MSB$

1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1

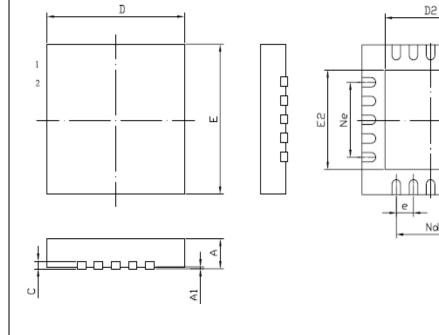

4. Typical Application Circuit

Reference Schematic

■ For MCD2006G 27MHz with 50Ω output impedance matching:

■ For MCD2006T 49.840MHz with 50Ω output impedance matching:

5. Package Dimensions


■ TSSOP-16

Dimensions are in millimeters.

16-Pin TSSOP Package

QFN-20L

SYMBOL	М	ILLIMETE	ER				
SIMBOL	MIN	NOM	MAX				
A	0.70	0.75	0.80				
Al	ı	0.01	0.05				
b	0.18	0.25	0.30				
c	0.18	0.20	0.25				
D	3.90	4.00	4.10				
D2	2. 65REF						
e	0	. 50BSC					
Ne	2	2. 00BSC					
Nd	- 1	2. 00BSC					
E	3. 90	4.00	4.10				
E2	2	2. 65REF					
L	0.35	0.40	0.45				
h	0.30 0.35 0.40						
L/F载体尺寸 (mil)	1	114x114					

Appendix1: MCD2006T ROM logic table

Note:

- (1) The background letters A~D denote channel group
- (2) When choosing group A and B, a 20MHz crystal is a must. While a 4MHz crystal is a must when selecting group C and D.
- (3) When pin N0-N5 float, the logic level is low, when the pin is connected to VDD, the logic level is high.

level is nigh.															
No	N5	N4	N3	N2	N1	N0	Fvco	No	N5	N4	N3	N2	N1	N0	Fvco
							(MHz)								(MHz)
1	0	0	0	0	0	0	3.2	17	0	1	0	0	0	0	7.0
2			0	0	0	1	3.4	18			0	0	0	1	7.2
3			0	0	1	0	3.6	19			0	0	1	0	7.5
4			0	0	1	1	3.8	20			0	0	1	1	7.8
5			0	1	0	0	4.0	21			0	1	0	0	8.0
6			0	1	0	1	4.2	22			0	1	0	1	Test
7			0	1	1	0	4.5	23			0	1	1	0	Test
8			0	1	1	1	4.8	24			0	1	1	1	Test
9			1	0	0	0	5.0	25			1	0	0	0	Test
10			1	0	0	1	5.2	26			1	0	0	1	Test
11			1	0	1	0	5.5	27			1	0	1	0	Test
12			1	0	1	1	5.8	28			1	0	1	1	Test
13			1	1	0	0	6.0	29			1	1	0	0	Test
14			1	1	0	1	6.2	30			1	1	0	1	Test
15			1	1	1	0	6.5	31			1	1	1	0	Test
16			1	1	1	1	6.8	32			1	1	1	1	Test
33	1	0	0	0	0	0	40.660	49	1	1	0	0	0	0	49.840
34			0	0	0	1	40.665	50			0	0	0	1	49.830
35			0	0	1	0	40.670	51			0	0	1	0	49.860
36			0	0	1	1	40.675	52			0	0	_1	1	49.890
37			0	1	0	0	40.680	53			0	1	0	0	49.850
38			0	1	0	1	40.685	54			0	1	0	1	49.880
39			0	1	1	0	40.690	55			0	1	1	0	49.950
40			0	1	1	1	-	56			0	1	1	1	49.920
41			1	0	0	0	40.700	57			1	0	0	0	49.900
42			1	0	0	1	40.695	58			1	0	0	1	49.870
43			1	0	1	0	Test	59			1	0	1	0	49.930
44			1	0	1	1	Test	60			1	0	1	1	49.940
45			1	1	0	0	Test	61			1	1	0	0	49.910
46			1	1	0	1	Test	62			1	1	0	1	Test
47			1	1	1	0	Test	63			1	1	1	0	Test
48			1	1	1	1	Test	64			1	1	1	1	Test

Appendix2: MCD2006R ROM logic table

Note: (1) The background letters A~D denote channel group.

- (2) A 20MHz crystal is a must for all groups.
- (3) When pin N0-N5 float, the logic level is low, when the pin is connected to VDD, the logic level is high.

No	N5	N4	N3	N2	N1	N0	Fvco	No	N5	N4	N3	N2	N1	N0	Fvco
							(MHz)								(MHz)
1	0	0	0	0	0	0	45.115	17	0	1	0	0	0	0	54.285
2			0	0	0	1	45.120	18			0	0	0	1	54.295
3			0	0	1	0	45.125	19			0	0	1	0	54.305
4			0	0	1	1	45.130	20			0	0	1	1	54.375
5			0	1	0	0	45.135	21			0	1	0	0	54.315
6			0	1	0	1	45.140	22			0	1	0	1	54.325
7			0	1	1	0	45.145	23			0	1	1	0	54.405
8			0	1	1	1	Test	24			0	1	1	1	54.345
9			1	0	0	0	45.155	25			1	0	0	0	54.355
10			1	0	0	1	45.150	26			1	0	0	1	54.335
11			1	0	1	0	Test	27			1	0	1	0	54.385
12			1	0	1	1	Test	28			1	0	1	1	54.395
13			1	1	0	0	Test	29			1	1	0	0	54.365
14			1	1	0	1	Test	30			1	1	0	1	Test
15			1	1	1	0	Test	31			1	1	1	0	Test
16			1	1	1	1	Test	32			1	1	1	1	Test
33	1	0	0	0	0	0	40.205	49	1	1	0	0	0	0	49.375
34			0	0	0	1	40.210	50			0	0	0	1	49.385
35			0	0	1	0	40.215	51			0	0	1	0	49.395
36			0	0	1	1	40.220	52			0	0	1	1	49.465
37			0	1	0	0	40.225	53			0	1	0	0	49.405
38			0	1	0	1	40.230	54			0	1	0	1	49.415
39			0	1	1	0	40.235	55			0	1	1	0	49.495
40			0	1	1	1	-	56			0	1	1	1	49.435
41			1	0	0	0	40.245	57			1	0	0	0	49.445
42			1	0	0	1	40.240	58			1	0	0	1	49.425
43			1	0	1	0	Test	59			1	0	1	0	49.475
44			1	0	1	1	Test	60			1	0	1	1	49.485
45			1	1	0	0	Test	61			1	1	0	0	49.455
46			1	1	0	1	Test	62			1	1	0	1	Test
47			1	1	1	0	Test	63			1	1	1	0	Test
48			1	1	1	1	Test	64			1	1	1	1	Test

Important Notice

MC Devices reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to MC Devices' terms and conditions of sale supplied at the time of order acknowledgment.

MC Devices warrants performance of its products to the specifications applicable at the time of sale in accordance with MC Devices' standard warranty. Testing and other quality control techniques are also support this warranty.

美芯集成电路 (深圳) 有限公司

中国深圳高新区科技中二路软件园一期四栋 516 室

电话: (86) 755-8618-5088 传真: (86) 755-8618-5000 Email: sales@mcdevices.com http://www.mcdevices.com

MC DEVICES Co.,Ltd

516 Bld. 4, National Software Park, 2 Kejizhong Rd., Shenzhen Hi-Tech Park, Shenzhen, Guagdong, China

Tel: 86-755-8618-5088

Fax: 86-755-8618-5000

Email: sales@mcdevices.com http://www.mcdevices.com